Generating tree amplitudes in $\mathcal{N}=4 \mathrm{SYM}$ and
 $$
\mathcal{N}=8 \mathrm{SG}
$$

Henriette Elvang (IAS)

Strings \& Gauge Theories Workshop
University of Michigan, Ann Arbor, Sept 22-26, 2008

- arXiv:0808.1720 w/ Michael Kiermaier and Dan Freedman
- arXiv:0805.0757 w/ Massimo Bianchi and Dan Freedman
- arXiv:0710.1270 w/ Dan Freedman

1. Motivation

Gravity as a quantum field theory:

- In perturbation theory, individual Feynman diagrams for loop corrections to scattering processes have UV divergences.
- Theory is non-renormalizable - so would need the UV divergencies to cancel to make the on-shell scattering amplitudes finite at each loop order.
- Supersymmetry \Longrightarrow cancellations among divergencies

The more, the better: In $3+1$ dimensions, there is a unique theory with maximal supersymmetry: $\mathcal{N}=8$ supergravity.

Proposal: Is $\mathcal{N}=8$ supergravity in $3+1 d$ perturbatively finite?
[Bern, Dixon, Roiban (2007)]

Is $\mathcal{N}=8$ supergravity perturbatively finite?

Explicit calculations of loop amplitudes:

Use generalized unitarity cuts [Bern, Dixon, Kosower, ...]
to construct loop amplitudes from products of on-shell tree amplitudes.
Example:

$\rightarrow \sum_{\text {intermediate states }} A_{n_{1}}^{\text {tree }} \times A_{n_{2}}^{\text {tree }}$

Our work focuses on developing efficient calculational methods for explicit construction of any on-shell n-point tree amplitudes in $\mathcal{N}=4$ super Yang-Mills theory and $\mathcal{N}=8$ supergravity.
\rightarrow Generating functions.
Applications to intermediate state sums in unitarity cuts.

How to calculate on-shell tree level scattering amplitudes

- Feynman rules « very many, very complicated diagrams
- On-shell recursion relations \longleftarrow very useful Get n-point amplitudes from k-point amplitudes with $k<n$.
- Generating functions \longleftarrow very efficient Idea: all n-point tree amplitudes of $\mathcal{N}=4$ SYM encoded in a set of simple Grassmann functions $Z_{n}^{\mathrm{MHV}}, Z_{n}^{\mathrm{NMHV}}, \ldots$, $Z_{n}^{\overline{\mathrm{MHV}}}$:

$$
A_{n}\left(X_{1}, X_{2}, \ldots, X_{n}\right)=D_{X_{1}} D_{X_{2}} \cdots D_{X_{n}} Z_{n}
$$

with differential operators $D_{X_{i}}$ in 1-1 correspondence with the states X_{i}.

Advantage: obtain amplitude directly without having to first compute set of lower-point amplitudes.

MHV sector and beyond

SUSY \Longrightarrow helicity violating n-gluon amplitudes vanish:

$$
A_{n}(+,+, \ldots,+)=A_{n}(-,+, \ldots,+)=0
$$

- The simplest amplitudes are MHV (maximally helicity violating)
$\rightarrow n$-gluon amplitude $A_{n}(-,-,+, \ldots,+)$
MHV sector: amplitudes related to A_{n} via SUSY Ward identities.
- The next-to-simplest amplitudes are Next-to-MHV
$\rightarrow n$-gluon amplitude $A_{n}(-,-,-,+, \ldots,+)$
NMHV sector: SUSY related (but much harder to solve SUSY Ward identities).

Salient properties of the generating function

\longrightarrow Generating functions developed for MHV, NMHV amplitudes + for anti-MHV and anti-NMHV.
\longrightarrow Precise characterization of MHV and NMHV sectors, e.g. $A_{6}\left(\lambda_{+} \lambda_{+} \lambda_{+} \lambda_{+} \phi \phi\right)$ is MHV in $\mathcal{N}=4$ SYM.
\longrightarrow Counts distinct processes in each sector:
MHV NMHV

$$
\begin{array}{lcc}
\mathcal{N}=4: & 15 & 34 \\
\mathcal{N}=8: & 186 & 919
\end{array}
$$

counting \leftrightarrow partitions of integers!
\longrightarrow Simple relationship $Z_{n}^{\mathcal{N}=8} \propto Z_{n}^{\mathcal{N}=4} \times Z_{n}^{\mathcal{N}=4}(\mathrm{MHV})$ clarifies SUSY and global symmetries in map $[\mathcal{N}=8]=[\mathcal{N}=4]_{\mathcal{L}} \otimes[\mathcal{N}=4]_{R}$ of states and KLT relations $M_{n}=\sum\left(k_{n} A_{n} A_{n}^{\prime}\right)$.
\longrightarrow Evaluation of state sums in unitarity cuts of loop amplitudes.

Outline

(1) Motivation
(2) MHV generating functions in $\mathcal{N}=4$ SYM
(3) Intermediate State Spin Sums
(4) Recursion relations \leftrightarrow MHV vertex expansion
(5) Next-to-MHV generating functions in $\mathcal{N}=4$ SYM
(6) From $\mathcal{N}=4$ SYM to $\mathcal{N}=8 \mathrm{SG}$
(1) Outlook

Notation

I will use spinor helicity formalism:

- If momentum p_{μ} null, i.e. $p^{2}=0$, then

$$
p_{\alpha \dot{\beta}}=p_{\mu}\left(\bar{\sigma}^{\mu}\right)^{\dot{\alpha} \beta}=|p\rangle^{\dot{\alpha}}\left[\left.p\right|^{\beta}\right.
$$

with bra and kets being 2-component commuting spinors which are solutions to the massless Dirac eqn, $p_{\alpha \dot{\beta}}|p\rangle^{\dot{\beta}}=0$.

- Spinor products $\langle 12\rangle \equiv\left\langle\left. p_{1}\right|_{\dot{\alpha}} \mid p_{2}\right\rangle^{\dot{\alpha}}$ and $[12]=\left[\left.p_{1}\right|^{\alpha} \mid p_{2}\right]_{\alpha}$ are just $\sqrt{2\left|p_{1} \cdot p_{2}\right|}$ up to a complex phase.
- Note $[i j]=-[j i]$ and $\langle i j\rangle=-\langle j i\rangle$.

2. MHV generating function $-\mathcal{N}=4 \mathrm{SYM}$

Amplitude $A_{n}\left(X_{1} X_{2} \ldots X_{n}\right)=D_{X_{1}} D_{X_{2}} \cdots D_{X_{n}} Z_{n}$

First need (state \leftrightarrow diff op) correspondence.

$\mathcal{N}=4 \mathrm{SYM}$

$\mathcal{N}=4$ SYM has 2^{4} massless states:

$$
a, b=1,2,3,4 \in S U(4) \text { global sym }
$$

$1+1$ gluons

$$
B^{-}, \quad B_{+}
$$

$4+4$ gluini

$$
F_{a}^{-}, \quad F_{+}^{a}
$$

6 self-dual scalars $\quad B^{a b}=\frac{1}{2} \epsilon^{a b c d} B_{c d}$
4 supercharges $\tilde{Q}_{a}=\epsilon_{\dot{\alpha}} \tilde{Q}_{a}^{\dot{\alpha}}$ and $Q^{a}=\tilde{Q}_{a}^{*}$ act on annihilation operators:

$$
\begin{array}{rlr}
{\left[\tilde{Q}_{a}, B_{+}(p)\right]} & =0, & \\
{\left[\tilde{Q}_{a}, F_{+}^{b}(p)\right]} & =\langle\epsilon p\rangle \delta_{a}^{b} B_{+}(p), & \\
{\left[\tilde{Q}_{a}, B^{b c}(p)\right]} & =\langle\epsilon p\rangle\left(\delta_{a}^{b} F_{+}^{c}(p)-\delta_{a}^{c} F_{+}^{b}(p)\right), & \text { (consistent with crossing sym. } \\
{\left[\tilde{Q}_{a}, B_{b c}(p)\right]} & =\langle\epsilon p\rangle \epsilon_{a b c d} F_{+}^{d}(p), & \text { and self-duality) } \\
{\left[\tilde{Q}_{a}, F_{b}^{-}(p)\right]} & =\langle\epsilon p\rangle B_{a b}(p), & \\
{\left[\tilde{Q}_{a}, B^{-}(p)\right]} & =-\langle\epsilon p\rangle F_{a}^{-}(p) &
\end{array}
$$

$\mathcal{N}=4$ SYM (state \leftrightarrow diff op) correspondence

Introduce auxiliary Grassman variable $\eta_{i a}$ i momentum label $p_{i}, \quad a=1, \ldots, 4$ is $S U(4)$ index.

Associate to each state Grassman diff ops $\partial_{i}^{a}=\frac{\partial}{\partial \eta_{i a}}$:

$$
\begin{aligned}
B_{+}\left(p_{i}\right) & \leftrightarrow 1 \\
F_{+}^{a}\left(p_{i}\right) & \leftrightarrow \partial_{i}^{a} \\
B_{+}^{a b}\left(p_{i}\right) & \leftrightarrow \partial_{i}^{a} \partial_{i}^{b} \\
F_{a}^{-}\left(p_{i}\right) & \leftrightarrow-\frac{1}{3!} \epsilon_{a b c d} \partial_{i}^{b} \partial_{i}^{c} \partial_{i}^{d} \\
B^{-}\left(p_{i}\right) & \leftrightarrow \partial_{i}^{1} \partial_{i}^{2} \partial_{i}^{3} \partial_{i}^{4}
\end{aligned}
$$

This is our (state \leftrightarrow diff op) correspondence.

SUSY generators $\tilde{Q}_{a}=\sum_{i=1}^{n}\langle\epsilon i\rangle \eta_{i a}$ and $Q^{a}=\sum_{i=1}^{n}[i \epsilon] \frac{\partial}{\partial \eta_{i j}}$ give correct SUSY algebra
$\left[Q^{a}, \tilde{Q}_{b}\right]=\delta_{b}^{a} \sum_{i=1}^{n}\left[\epsilon_{1} i\right]\left\langle\epsilon_{2}\right\rangle=\delta_{b}^{a} \sum_{i=1}^{n} \epsilon_{1}^{\alpha} p_{i \alpha \dot{\beta}} \tilde{\epsilon}_{2}^{\dot{\beta}} \rightarrow 0 \quad$ (mom. cons.), and
$[\tilde{Q}$, diff op $]=\langle\epsilon p\rangle(\text { diff op })^{\prime}$
produces correct algebra on states.

The MHV generating function is

$$
Z_{n}^{\mathcal{N}=4}\left(\eta_{i a}\right)=\frac{A_{n}\left(1^{-}, 2^{-}, 3^{+}, \ldots, n^{+}\right)}{\langle 12\rangle^{4}} \delta^{(8)}\left(\sum_{i}|i\rangle \eta_{i a}\right)
$$

where $\delta^{(8)}\left(\sum_{i}|i\rangle \eta_{i a}\right)=2^{-4} \prod_{a=1}^{4} \sum_{i, j=1}^{n}\langle i j\rangle \eta_{i a} \eta_{j a}$.
[Nair (1988)] [GGK (2004)]
(δ-function of Grassman variables θ_{a} is $\prod \theta_{a}$)

$$
\begin{array}{ll}
\eta_{i a} & \text { - } \\
a=1,2,3,4 & \text { auxilliary Grassman variables } \\
i, j=1,2, \ldots, n & \text { - } \\
i, j) \text { momentum labels }
\end{array}
$$

Claim: any 8th order derivative operator built from (state \leftrightarrow diff op) correspondence gives an MHV amplitude when applied to $Z_{n}^{\mathcal{N}=4}$:

$$
A_{n}^{\mathrm{MHV}}\left(X_{1}, \ldots, X_{n}\right)=D_{X_{1}} \cdots D_{X_{n}} Z_{n}^{\mathcal{N}=4} .
$$

Let's prove this!

Proof:

$$
Z_{n}^{\mathcal{N}=4}\left(\eta_{i a}\right)=\frac{A_{n}\left(1^{-}, 2^{-}, 3^{+}, \ldots, n^{+}\right)}{\langle 12\rangle^{4}} \delta^{(8)}\left(\sum_{i}|i\rangle \eta_{i a}\right)
$$

- $Z_{n}^{\mathcal{N}=4}$ reproduces pure MHV gluon amplitude $A_{n}\left(1^{-}, 2^{-}, 3^{+}, \ldots, n^{+}\right)$correctly.

Proof:

$$
Z_{n}^{\mathcal{N}=4}\left(\eta_{i a}\right)=\frac{A_{n}\left(1^{-}, 2^{-}, 3^{+}, \ldots, n^{+}\right)}{\left\langle 122^{4}\right.} \delta^{(8)}\left(\sum_{i}|i\rangle \eta_{i a}\right)
$$

- $Z_{n}^{\mathcal{N}=4}$ reproduces pure MHV gluon amplitude $A_{n}\left(1^{-}, 2^{-}, 3^{+}, \ldots, n^{+}\right)$correctly.
- $\tilde{Q}_{a} Z_{n}^{\mathcal{N}=4} \propto\left(\sum_{i=1}^{n}|i\rangle \eta_{i a}\right) \delta^{(8)}\left(\sum_{i}|i\rangle \eta_{i a}\right)=0$.

Proof:

$$
Z_{n}^{\mathcal{N}=4}\left(\eta_{i a}\right)=\frac{A_{n}\left(1^{-}, 2^{-}, 3^{+}, \ldots, n^{+}\right)}{\langle 12\rangle^{4}} \delta^{(8)}\left(\sum_{i}|i\rangle \eta_{i a}\right)
$$

- $Z_{n}^{\mathcal{N}=4}$ reproduces pure MHV gluon amplitude $A_{n}\left(1^{-}, 2^{-}, 3^{+}, \ldots, n^{+}\right)$correctly.
- $\tilde{Q}_{a} Z_{n}^{\mathcal{N}=4} \propto\left(\sum_{i=1}^{n}|i\rangle \eta_{i a}\right) \delta^{(8)}\left(\sum_{i}|i\rangle \eta_{i a}\right)=0$.
- $\left[\tilde{Q}_{a}, D^{(9)}\right] Z_{n}^{\mathcal{N}=4}=0$
encode the MHV SUSY Ward identities:

$$
\begin{aligned}
& 0=\left[\tilde{Q}_{a}, D^{(9)}\right] Z_{n}^{\mathcal{N}=4}=\sum_{t} D_{X_{1}} \cdots\left[\tilde{Q}_{a}, D_{X_{t}}\right] \cdots D_{X_{n}} Z_{n}^{\mathcal{N}=4}, \\
& 0=\langle 0|\left[\tilde{Q}_{a}, X_{1} \ldots X_{n}\right]|0\rangle=\sum_{t}\left\langle X_{1} \ldots\left[\tilde{Q}_{a}, X_{t}\right] \ldots X_{n}\right\rangle .
\end{aligned}
$$

Proof:

$$
Z_{n}^{\mathcal{N}=4}\left(\eta_{i a}\right)=\frac{A_{n}\left(1^{-}, 2^{-}, 3^{+}, \ldots, n^{+}\right)}{\langle 12\rangle^{4}} \delta^{(8)}\left(\sum_{i}|i\rangle \eta_{i a}\right)
$$

- $Z_{n}^{\mathcal{N}=4}$ reproduces pure MHV gluon amplitude $A_{n}\left(1^{-}, 2^{-}, 3^{+}, \ldots, n^{+}\right)$correctly.
- $\tilde{Q}_{a} Z_{n}^{\mathcal{N}=4} \propto\left(\sum_{i=1}^{n}|i\rangle \eta_{i a}\right) \delta^{(8)}\left(\sum_{i}|i\rangle \eta_{i a}\right)=0$.
- $\left[\tilde{Q}_{a}, D^{(9)}\right] Z_{n}^{\mathcal{N}=4}=0$
encode the MHV SUSY Ward identities:

$$
\begin{aligned}
& 0=\left[\tilde{Q}_{a}, D^{(9)}\right] Z_{n}^{\mathcal{N}=4}=\sum_{t} D_{X_{1}} \cdots\left[\tilde{Q}_{a}, D_{X_{t}}\right] \cdots D_{X_{n}} Z_{n}^{\mathcal{N}=4}, \\
& 0=\langle 0|\left[\tilde{Q}_{a}, X_{1} \ldots X_{n}\right]|0\rangle=\sum_{t}\left\langle X_{1} \ldots\left[\tilde{Q}_{a}, X_{t}\right] \ldots X_{n}\right\rangle .
\end{aligned}
$$

- MHV SUSY Ward identities have unique solutions.

Proof:

$$
Z_{n}^{\mathcal{N}=4}\left(\eta_{i a}\right)=\frac{A_{n}\left(1^{-}, 2^{-}, 3^{+}, \ldots, n^{+}\right)}{\langle 12\rangle^{4}} \delta^{(8)}\left(\sum_{i}|i\rangle \eta_{i a}\right)
$$

- $Z_{n}^{\mathcal{N}=4}$ reproduces pure MHV gluon amplitude $A_{n}\left(1^{-}, 2^{-}, 3^{+}, \ldots, n^{+}\right)$correctly.
- $\tilde{Q}_{a} Z_{n}^{\mathcal{N}=4} \propto\left(\sum_{i=1}^{n}|i\rangle \eta_{i a}\right) \delta^{(8)}\left(\sum_{i}|i\rangle \eta_{i a}\right)=0$.
- $\left[\tilde{Q}_{a}, D^{(9)}\right] Z_{n}^{\mathcal{N}=4}=0$
encode the MHV SUSY Ward identities:

$$
\begin{aligned}
& 0=\left[\tilde{Q}_{\mathrm{a}}, D^{(9)}\right] Z_{n}^{\mathcal{N}=4}=\sum_{t} D_{X_{1}} \cdots\left[\tilde{Q}_{\mathrm{a}}, D_{X_{t}}\right] \cdots D_{X_{n}} Z_{n}^{\mathcal{N}=4}, \\
& 0=\langle 0|\left[\tilde{Q}_{a}, X_{1} \ldots X_{n}\right]|0\rangle=\sum_{t}\left\langle X_{1} \ldots\left[\tilde{Q}_{a}, X_{t}\right] \ldots X_{n}\right\rangle .
\end{aligned}
$$

- MHV SUSY Ward identities have unique solutions.
$\Rightarrow Z_{n}^{\mathcal{N}=4}$ produces all MHV amplitudes correctly.

Characterizing amplitudes in the MHV sector of $\mathcal{N}=4$ SYM: $D^{(8)} Z_{n}^{\mathcal{N}=4}=\mathrm{MHV}$ amplitude hence \# MHV amplitudes $=$ \# partitions of 8 with $n_{\max }=4$.

MHV amplitudes:

$$
\begin{array}{rlrl}
8 & =4+4 & \leftrightarrow\left\langle B^{-} B^{-} B_{+} \ldots B_{+}\right\rangle \\
& =4+3+1 & \leftrightarrow\left\langle B^{-} F_{a}^{-} F_{+}^{a} B_{+} \ldots B_{+}\right\rangle \\
& \cdots & & \\
& =1+\cdots+1 \leftrightarrow\left\langle F_{+}^{a_{1}} \ldots F_{+}^{a_{8}} B_{+} \ldots B_{+}\right\rangle
\end{array}
$$

Total of 15 MHV amplitudes in $\mathcal{N}=4$ SYM.

Example:

Calculate $\left\langle B^{-}\left(p_{1}\right) F_{+}^{1}\left(p_{2}\right) F_{+}^{2}\left(p_{3}\right) F_{+}^{3}\left(p_{4}\right) F_{+}^{4}\left(p_{5}\right) B^{+}\left(p_{6}\right)\right\rangle$

$$
\begin{aligned}
& \left(\partial_{1}^{1} \partial_{1}^{2} \partial_{1}^{3} \partial_{1}^{4}\right)\left(\partial_{2}^{1}\right)\left(\partial_{3}^{2}\right)\left(\partial_{4}^{3}\right)\left(\partial_{5}^{4}\right) \delta^{(8)}\left(\sum_{i}|i\rangle \eta_{i a}\right) \\
& =\left(\partial_{1}^{1} \partial_{2}^{1}\right)\left(\partial_{2}^{2} \partial_{3}^{2}\right)\left(\partial_{1}^{3} \partial_{4}^{3}\right)\left(\partial_{1}^{4} \partial_{5}^{4}\right) \delta^{(8)}\left(\sum_{i}|i\rangle \eta_{i a}\right) \\
& =\langle 12\rangle\langle 13\rangle\langle 14\rangle\langle 15\rangle
\end{aligned}
$$

using $\delta^{(8)}\left(\sum_{i}|i\rangle \eta_{i a}\right)=\left(2^{-4} \prod_{a=1}^{4} \sum_{i, j=1}^{n}\langle i j\rangle \eta_{i a} \eta_{j a}\right)$,
so

$$
\begin{aligned}
& \left\langle B^{-}\left(p_{1}\right) F_{+}^{1}\left(p_{2}\right) F_{+}^{2}\left(p_{3}\right) F_{+}^{3}\left(p_{4}\right) F_{+}^{4}\left(p_{5}\right) B^{+}\left(p_{6}\right)\right\rangle \\
& \quad=\frac{\langle 12\rangle\langle 13\rangle\langle 14\rangle\langle 15\rangle}{\langle 12\rangle^{4}} A_{n}\left(1^{-}, 2^{-}, 3^{+}, 4^{+}, 5^{+}, 6^{+}\right) .
\end{aligned}
$$

3. Intermediate state sum

Example: One-loop MHV amplitude

Use MHV generating function to compute intermediate state sum of unitarity cut:

$$
D_{l_{1}}^{(4)} D_{l_{2}}^{(4)}\left[\delta^{(8)}(I) \delta^{(8)}(J)\right]
$$

$D_{1_{1}}$ and $D_{1_{2}}$ distribute themselves between $\delta^{(8)}(I)$ and $\delta^{(8)}(J)$.
This automatically takes care of the intermediate state sum.

Have done 1-, 2-, 3-, and 4-loop state sums involving MHV, NMHV, $\overline{\mathrm{MHV}}$, and $\overline{\mathrm{NMHV}}$ generating functions in $\mathcal{N}=4$.

Outline

(1) Motivation
(2) MHV generating functions in $\mathcal{N}=4$ SYM
(3) Intermediate State Spin Sums
(4) Recursion relations \leftrightarrow MHV vertex expansion
(5) Next-to-MHV generating functions in $\mathcal{N}=4$ SYM
(6) From $\mathcal{N}=4$ SYM to $\mathcal{N}=8 \mathrm{SG}$
(1) Outlook

4. Recursion relations \leftrightarrow MHV vertex expansion

- Recursion relations: express on-shell n-point amplitude in terms of k-point on-shell sub-amplitudes with $k<n$.
- Even better if sub-amplitudes are MHV
\rightarrow MHV vertex expansion.

For gluons:
[Britto, Cachazo, Feng (2004)] [Britto, Cachazo, Feng, Witten
(2005)] [Cachazo, Svrcek, Witten (2004)] [Risager (2005)]

For general $\mathcal{N}=4$ external state:
[Bianchi, Freedman, HE (May 2008)]
[Freedman, Kiermaier, HE (Aug 2008)]
[Cheung (2008)] [-, anything)-shift OK
[Arkani-Hamed, Cachazo, Kaplan (2008)] new 2-line SUSY shift.
[Brandhuber, Heslop, Travaglini (2008)]
[Drummond, Henn (2008)]

3-line shift recursion relations

- Analytically continue amplitudes to complex values by shifts of 3 external momenta:

$$
p_{i}^{\mu} \rightarrow \hat{p}_{i}^{\mu}=p_{i}^{\mu}+z q_{i}^{\mu}, \quad \text { for } \quad i=1,2,3 .
$$

where

$$
\begin{array}{rll}
q_{1}^{\mu}+q_{2}^{\mu}+q_{3}^{\mu}=0 & \leftrightarrow & \text { momentum } \quad \text { conservation } \\
q_{i}^{2}=0=q_{i} \cdot p_{i} & \leftrightarrow & \text { on-shell } \quad \hat{p}_{i}^{2}=0
\end{array}
$$

Achieved by $\mid 1] \rightarrow \mid \hat{1}]=\mid 1]+z\langle 23\rangle \mid X] \quad(+$ cyclic $)$ with $\mid X]$ arbitrary "reference spinor".

- The tree amplitude $A_{n}(z)$ has only simple poles, so if $A_{n}(z) \rightarrow 0$ for $z \rightarrow \infty$, then

$$
0=\oint \frac{A_{n}(z)}{z} \rightarrow A_{n}(0)=-\sum_{z \neq 0} \operatorname{Res} \frac{A_{n}(z)}{z}
$$

- Result is on-shell recursion relation

$$
A_{n}(0)=\sum_{l} A_{n_{1}} \frac{1}{P_{l}^{2}} A_{n_{2}}, \quad n_{1}+n_{2}=n+2
$$

The special 3-line shift ensures that the sub-amplitudes are both MHV if A_{n} is NMHV. [Risager (2005)]

\rightarrow Now use this to get NMHV gen func.

5. Next-to-MHV generating functions $-\mathcal{N}=4$ SYM

- Consider a single MHV vertex diagram:

- Apply MHV gen func to each vertex to derive (details omitted)

$$
\Omega_{n, l}^{\mathcal{N}=4}=\frac{A_{n, I}^{\text {gluons }}}{\left\langle m_{1} P_{I}\right\rangle^{4}\left\langle m_{2} m_{3}\right\rangle^{4}} \delta^{(8)}\left(L_{a}+R_{a}\right) \prod_{a=1}^{4}\left\langle P_{l} L_{a}\right\rangle
$$

where $L_{a}=\sum_{i \in L}|i\rangle \eta_{i a}$ and $R_{a}=\sum_{j \in R}|j\rangle \eta_{j a}$.
[Georgio, Glover and Khoze (2004)]

- Each term in $\Omega_{n, l}^{\mathcal{N}=4}$ is order 12 in $\eta_{i a}$'s.
- Value of diagram is $D^{(12)} \Omega_{n, l}^{\mathcal{N}=4}$ with $D^{(12)}$ built from the external states.
- Sum all diagram gen func's to get full NMHV gen func:

$$
\Omega_{n}^{\mathcal{N}=4}=\sum_{l} \Omega_{n, l}^{\mathcal{N}=4}
$$

Example:

NMHV gluon amplitude

$$
A_{n}\left(1^{-}, 2^{-}, 3^{-}, 4^{+}, \ldots, n^{+}\right)=D_{1}^{(4)} D_{2}^{(4)} D_{3}^{(4)} \Omega_{n}^{\mathcal{N}=4}
$$

Partition $12=4+4+4$.
$\mathcal{N}=4$ SYM:
\# NMHV amplitudes $=\#$ partitions of 12 with $n_{\max }=4$.
Total of 34.

But. . .

We used MHV vertex expansion from 3-line shift recursion relations, which assumed

$$
A_{n}(z) \rightarrow 0 \quad \text { for } \quad z \rightarrow \infty
$$

Is this OK?

We used MHV vertex expansion from 3-line shift recursion relations, which assumed

$$
A_{n}(z) \rightarrow 0 \quad \text { for } \quad z \rightarrow \infty
$$

Is this OK?

YES! [Freedman, Kiermaier, HE (Aug 2008)] .

- provided the three lines share a common (upper) SU(4) index.
$\ln \mathcal{N}=4$ SYM, $A_{n}(\hat{1}, \ldots, \hat{i}, \ldots, \hat{j}, \ldots) \rightarrow 0$ for $z \rightarrow \infty$ when the 3 shifted states $1, i, j$ share a common (upper) $S U(4)$ index.

Outline of proof:

- Consider first amplitude A_{n} with state 1 a -ve helicity gluon.
- Use [Cheung (2008)]'s result [1-, $k\rangle$-shift gives valid BCFW 2-line shift recursion relations

- Perform subsequent $[1, i, j \mid$-shift: The as $z \rightarrow \infty$: diagrams MHV \times MHV $\rightarrow O\left(\frac{1}{z}\right)$ diagrams $\mathrm{NMHV}_{n-1} \times \overline{\mathrm{MHV}}_{3} \rightarrow O\left(\frac{1}{z}\right)$ using inductive assumption.
- Basis of induction established by careful examination of $n=6$ cases.
- So $A_{n}\left(\hat{1}^{-}, \ldots, \hat{i}, \ldots, \hat{j}, \ldots\right) \rightarrow 1 / z$ for large z.
- Use SUSY Ward identities to generalize state 1 to any $\mathcal{N}=4$ state sharing a common index with i and j.

Summary $-\mathcal{N}=4$ SYM

This proves the validity of the NMHV generating function in $\mathcal{N}=4$ SYM. It shows at the same time that the MHV vertex expansion is true for all external states.

Also, the generating function is unique: once established, it does not know which valid 3 -line shift it came from!

Anti-(N)MHV: The generating function for $\overline{(N) M H V}$ and be obtained from that of (N)MHV by a Grassman Fourier transform.

We have succesfully applied our generating functions to the evaluation of several 1-, 2-, 3-, and 4-loop intermediate state sums.

6. From $\mathcal{N}=4 \mathrm{SYM}$ to $\mathcal{N}=8 \mathrm{SG}$

- MHV generating function generalizes directly. \rightarrow Useful for testing map $[\mathcal{N}=4] \times[\mathcal{N}=4]=[\mathcal{N}=8]$ at tree level
- Natural implementation of NMHV generating function \rightarrow but it doesn't work for all possible external states of $\mathcal{N}=8 \mathrm{SG}$!
\rightarrow because the MHV vertex expansion fails in these cases!

From $\mathcal{N}=4 \mathrm{SYM}$ to $\mathcal{N}=8 \mathrm{SG}$ (cont'd)

Large z for pure graviton n-point amplitude:

$$
M_{n}\left(\hat{1}^{-}, \hat{2}^{-}, \hat{3}^{-}, 4^{+}, \ldots, n^{+}\right) \rightarrow z^{n-12} \quad \text { for } \quad z \rightarrow \infty
$$

Numerically verified for $n=5, \ldots, 11$.

- When the $M_{n}(z)$ does not vanish for large z the $O(1)$-term contributes as the residue of the pole at infinity. No (known) amplitude factorization that allows systematic calculation of this part.
- Intermediate state sums in unitarity cuts of $\mathcal{N}=8$ SG loop amplitudes performed in terms of $\mathcal{N}=4$ SYM via the KLT (Kawai-Lewellen-Tye) relations $M_{n} \sim \sum(k . f.) A_{n} A_{n}^{\prime}$.

7. Outlook

Loops in $\mathcal{N}=8$ supergravity

Is there are connection between "bad" large z behavior in supergravity tree amplitudes and potential UV divergencies?

Role of $E_{7,7}$?

- 70 scalars of $\mathcal{N}=8 \mathrm{SG}$ are Goldstone bosons of spontaneously broken $E_{7,7} \rightarrow S U(8)$.
- How will $E_{7,7}$ reveal itself?
\rightarrow soft-scalar limits of amplitudes (analogous to soft-pion low-energy theorems of Adler).
- We find that 1 -soft-"pion" limits of $\mathcal{N}=8$ tree amplitudes vanish.
- Note that in pion physics 1 -pion soft limits do not necessarily vanish, even in models with pions and nucleons both massless.
- Since our May paper: new results by [Arkani-Hamed, Cachazo, Kaplan (2008)]

